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We develop a fitness functional for freezing molecular energy flow that relies only on experimental observables.
The functional allows us to implement a modular control algorithm where simulation data and experimental
data can be used interchangeably. This interchangeability could be useful as a spectroscopic tool and for
reactive control because the controllability of the experimental system and its model can be compared directly.
The fitness functional performs as well as functionals based on complete knowledge of the wave function.
We compare our simulation results with an analytical theory of control, and find good agreement between the
simulated and predicted times over which the system can be controlled.

Introduction

A major goal of molecular spectroscopy is to extract
maximum information about a molecule or reaction from the
experimental data. Coherent control of molecules can be helpful
in that regard, by reducing access of the system to only a part
of the potentially accessible state space. Dynamics in a reduced
state space could weight the experimentally accessible observ-
ables more toward the dynamics of interest.

Coherent control of molecules has been investigated extensively,1-8

and some thought has been given to restricting dynamics in state
space by coherent control.9-12 We previously demonstrated
computationally the feasibility of freezing intramolecular vi-
brational energy redistribution (IVR).13 The idea is to prepare
a nonstationary bright state (bright ) optically accessible),
followed by a shaped pulse to prevent that state from dephasing.
In effect, the dipole-field coupling in the Hamiltonian offsets
anharmonic vibrational couplings that ordinarily allow a bright
feature in the spectrum to dephase into dark bath states. Frozen
bright states are more likely than molecular eigenstates to exhibit
nonstatistical couplings to the reactive continuum or to other
electronic states, making them useful gateways toward under-
standing chemical dynamics and electronic couplings at high
molecular excitation.

One shortcoming of our previous work was its use of a control
functional based on knowledge of the molecular wave function.
Such a control functional cannot be adapted for experimental
control. This problem can be solved by a formulation in terms
of observables only.14,15 The resulting ability to substitute model
and experiment for one another allows for a more direct
comparison of computed and experimental control. Here we
develop a control functional that is equally useful for compu-
tational and experimental implementations of freezing bright
states. To that end, we rigorously separate the control algorithm
into an observable module and an optimization module. Given
a control field, the observable module generates experimentally
measurable observables and passes only these to the optimization

module. The optimization module uses only observables to
compute a control functional that is used by a genetic algorithm
(GA) to select an improved control field, and passes only the
control field back to the observables module. No constraints
(e.g., Lagrange multipliers) are involved in our optimization.
Instead, a full physical model of the laser source is used.13

Although observables are not a perfect stand-in for complete
knowledge of the wave function, a significant enhancement (up
to 2 orders of magnitude in time) of the control field’s ability
to freeze bright states can be obtained with the best control
functional we tested, using only hundreds of iterations of the
GA. Our method clearly utilizes coherent control, since more
trivial forms of control that rely on population cycling only,
pumping isolated eigenstates, or phase-independent effects are
eliminated by our laser parameters, fitness criterion, and
constraints on the pulse shaper. This is a significant advantage
when using fields of high intensity (1013 W/cm2 or greater), as
it has been demonstrated that previous experiments that control
with such intense fields may not lead to the expected nonstatis-
tical effects.16

The Control Model

In coherent control experiments, the control field is
generated by a pulse shaper that attenuates and phase-shifts
a fixed input pulse, and the system to be controlled is treated
as a “black box” so that the mechanism behind the improved
control is not revealed.17-19 On the other hand, control
simulations have depended on knowledge of the full wave
function, and start with an arbitrary field subject to Lagrange
multiplier constraints on maximum power and other parame-
ters.10,20-23 Bringing these two limits together imposes several
requirements on the control algorithm. The control functional
should depend only on observables; the shaped pulse should
be physically modeled to resemble the experiment, obviating
Lagrange multiplier constraints; the observables module and
optimization module should pass only observables and
electric fields back and forth.

We describe how a control framework that meets the above
criteria may be used to freeze the dephasing of the ground-
state vibrational wavepacket of a molecule. We use a sequence
of three laser pulses outlined in Figure 1: an initialization pulse
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prepares the molecule in a vibrational eigenstate |ΨI〉 in an
excited electronic state; a shaped control pulse cycles the
molecule back and forth into the ground state |ΨC(t)〉 and
controls dephasing of |ΨC(t)〉; finally a variable-time delay probe
pulse pumps the ground-state wavepacket up to another
electronic state |ΨP〉 from which fluorescence is measured. The
latter step maps ground-state wavepacket dynamics onto a
known state, providing the data needed to generate the control
functional and optimize the control pulse.

Our goal is to construct a framework for interchangeable
simulation-based or experiment-based freezing of a bright state
|ΨB〉 by utilizing the same observables and control functional
for both cases. The procedure is described in Figure 2; the
control process is separated into an observable and an optimiza-
tion module. In the observable module we list the steps for
modeling the experimental output by computer simulation, but
an experimental apparatus could stand in for the module as
diagrammed. In the following sections, we discuss both general
criteria and our specific implementation for freezing energy flow
in turn.

The Target. The control target itself can be specified by a
target wave function, or operationally via an experimental
signal. Although we are not allowed to use knowledge of
the target state in the optimization module, it is useful to
define the types of target states the optimization could be
asked to produce.

The prototypical goal is a bright state |ΨB〉 ) Σ Ii
1/2|i〉 . In the

time domain, such a bright state is nonstationary and dephases.

In the frequency domain, its spectral envelope covers a clump
of eigenstates with intensities Ii in the spectrum. Clumps arise
because a dipole active state is anharmonically coupled to dark
states, spreading its transition dipole moment over Neff eigen-
states.24 An experimental example with intensities Ii and
eigenstates |i〉 at energies Ei is shown in Figure 3 (black sticks).25

There are Neff ≈ 50 eigenstates available for control.

If the control goal is to freeze the controlled state |ΨC(t)〉 so
it equals the bright target state |ΨB〉 for a time tTarget, only phase
pulse shaping is required. The amplitudes |ε(ω)| of the control
pulse ε(t) are simply held constant at values ensuring that each
eigenstate |i〉 receives amplitude Ii

1/2. Of course the values
assigned to |ε(ω)| need to compensate for probe transition
distortion (probe field envelope and transition dipoles µCP are
different for each eigenstate |i〉).

The task of the control field is to adjust the phases of the
controlled state |ΨC〉 ) Σ ci(t)|i〉 such that ci(t) ≈ Ii

1/2 as best as
possible up to a maximal control time tTarget. The control field
ε(t) achieves control by cycling population between |ΨC(t) >
and |ΨI〉 , attenuating undesirable parts of |ΨC(t)〉 by destructive
interference, and building up desirable parts by constructive
interference. The control field effectively cancels out the
anharmonic couplings that distribute the intensity of the bright
target state over the eigenstates. Ideally, this task would yield

Figure 1. Schematic of the three-pulse sequence for freezing IVR and
measurement. The initialization pulse pumps the molecule to an excited
electronic state. The control pulse has a broad spectrum and acts to
slow the dephasing of the vibrational wavepacket in the ground state.
A final probe pulse pumps another electronic state after a time delay,
to probe whether the ground-state wave packet remains undepahsed
during control and dephases after control.

Figure 2. A flowchart of the GA pulse optimization procedure with
observable and optimization modules. The observable module passes
only a signal measurable by a particular experiment to the optimization
module, and is thus exchangeable by an experimental output. It receives
from the optimization module only information about the pulse to be
tested.

Figure 3. The spectrum of eigenstates used in the observables module,
and the spectrum of the unshaped control laser pulse (smooth curve).
The heights of the red bars are the B̃ r X̃ transition dipole moments,
and the heights of the black bars are the Ã f X̃ transition dipole
moments.
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Because |ΨC(t)〉 rapidly dephases after the control field ends,
there would be a large contrast ∼Neff between the target overlap
during and after control.

We can broaden the definition of the target to include any
artificially chosen envelope Ii and phase evolution. For example,
we could ask that the state |ΨC(t)〉 produce the maximum
contrast between a large probe signal during control, and no
probe signal after tTarget has passed. In that case, amplitude pulse
shaping might do better than phase-only pulse shaping: the
optimal amplitude mask could enhance amplitudes near the edge
of the mask to increase Neff. An undesirable outcome would
be for the amplitude mask to collapse |ΨC(t) > to a single
eigenstate (resulting in the desired constant probe output from
t ) 0 to t ) tTarget), and then to cycle that eigenstate back to the
initial prepared state (mimicking the dephasing). Such outcomes
would have to be designed against if a variable amplitude mask
is allowed.

The fundamental problem with eq 1 is that we cannot evaluate
the overlap integral experimentally. An experimentally observ-
able replacement that guards against undesirable outcomes needs
to be used in the observable module.

Observable Module. The optimization source data used here
was generated by computer simulation. However, the observable
module is designed to be applicable equally to closed-loop
laboratory experiments.

To achieve this, the only input for the module can be a guess
ε(t) for the optimal control electric field, and the only output
must be an experimental observable. We can broadly classify
the outputs into three related groups: spectral observables,
temporal observables, and averaged observables generated from
either spectral or temporal observables.

Spectral observables include line positions and intensities
available from continuous wave excitation. These are particularly
useful for control by interference of paths through different sets
of eigenstates.

Temporal observables include quantities such as absorption
or fluorescence intensities as a function of pump-probe delay
t0. For a single control transition, these are fundamentally related
to dipole correlation functions. For example, consider the
initialization-control-probe sequence to freeze energy flow
outlined in Figure 1. First a high-resolution laser prepares an
initial pure quantum state |ΨI〉 . A shaped control pulse ε(t) acts
on the dipole µIC to cycle population between |ΨI〉 and |ΨC(t)〉
to control |ΨC(t)〉 . Finally a transform-limited probe pulse,
centered at a variable time delay t0 from the control pulse,
projects |ΨC(t)〉 onto the state 〈ΨP|µCP

† , where µCP
† is the transition

dipole operator for the final probe step. The total fluorescence
from state P varies as a function of time delay t0 as

Ifl
P[t0,ε] can be simulated by wavepacket dynamics of |ΨC(t)〉 ,

which are controlled by the field ε. Equation 2 can either be
measured experimentally, or obtained by simultaneously propa-
gating |ΨI〉 and |ΨC(t)〉 with the Hamiltonian

To bring the simulations as close as possible to experiment, we
used experimental energies Ei to construct the vibrational
Hamiltonian Ei ) 〈i|Hvib|i〉 , and experimental intensities Ii to
construct the transition operator µIC ) 〈Ψc|µ|i〉 ∼ Ii

1/2. The actual
values used here are shown in Figure 3 and Table 1. Note that
eq 2 assumes a short broad bandwidth probe pulse, although a
more general formula for any probe pulse is easily derived by
copropagating |ΨI〉 , |ΨC(t)〉 , and |ΨP〉 instead of just |ΨI〉 and
|ΨC(t)〉 .

|〈ΨB|ΨC(t)〉 |2 ) 1, 0 e t e tTarget

|〈ΨB|ΨC(t)〉 |2 ≈ Neff
-1, t > tTarget

(1)

Ifl
P[t0, ε] ∼ |〈ΨP|µCP

† |ΨC(t0)〉 |
2 (2)

H(t) ) Hvib - µIC · ε(t) (3)

TABLE 1: Frequencies (THz) and transition dipoles (X̃ r Ã
and X̃ f B̃) for the eigenstates making up the bright feature
whose dephasing is to be controlleda

frequency (THz) µIC (aC ·pm) µCP (aC ·pm)

215.161 0.640565 6.33596
215.251 0.409841 6.33596
215.411 0.496544 4.22398
215.610 0.281133 2.98680
215.901 0.362460 5.17330
216.076 0.402642 4.72256
216.136 0.470650 2.11199
216.194 0.420496 2.98679
216.369 0.481515 10.7691
216.555 0.284579 10.5599
216.647 0.523021 7.90235
216.767 0.723985 5.57112
216.868 0.518992 2.11199
217.056 0.344642 2.11199
217.104 0.373866 2.11199
217.344 0.530424 2.11199
218.384 0.354086 6.33596
218.502 0.561199 2.98680
218.629 0.394932 6.67871
218.677 0.379440 5.17330
218.793 0.293912 2.98680
218.933 0.276019 3.65806
219.014 0.356408 5.17330
219.118 0.359134 4.22398
219.248 0.293146 2.11199
219.457 0.284052 2.11199
219.633 0.435218 2.11199
219.691 0.365139 2.11199
219.842 0.275202 2.11199
219.937 0.362253 2.11199
220.122 0.304439 2.98680
220.224 0.498202 4.72254
220.298 0.450957 4.22398
220.366 0.435565 5.17330
220.692 0.363491 4.72254
220.892 0.315804 5.58780
220.962 0.297210 4.22398
221.031 0.367797 4.72254
221.136 0.393601 6.33596
221.346 0.277644 6.67871
221.451 0.297715 6.67871
221.667 0.489548 10.1288
221.720 0.379043 11.1756
222.029 0.596060 3.87133
222.256 0.291092 1.36873
222.536 0.274110 1.76702
223.270 0.297462 2.09076
224.029 0.522878 1.93567
224.100 0.391883 1.58047
224.179 0.280331 1.58047
224.609 0.388424 1.58047
224.813 0.708280 0.79023
225.078 0.391883 2.62091
225.239 0.362460 2.84923
225.312 0.585525 2.23512
225.440 0.907552 1.58046

a Data derived from ref 25.
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Averaged observables can be obtained from spectral or
temporal observables, and are useful for imposing constraints
on the optimization. An example of an averaged observable is
the partially time-averaged fluorescence from state K ) I,C,
or P

Here tmax - tmin is the range of time delays between control
pulse and probe pulse over which the output signal is averaged.
Equation 4 plays an important role in our proposed control
functionals. If eq 4 is averaged long past the end of the control
pulse, its value is bounded by 1/Neff, the inverse number of
eigenstates participating during the control process.

Optimization Module. The optimization algorithm proceeds
as outlined in the left half of Figure 2. First, it obtains from the
observable module the observables of the current generation
{ε(t)} of trial fields. Then the observables are used to compute
the control functional for each trial field. A GA then produces
a new generation of control fields based on selecting the best
control functionals from the previous generation. These control
fields are returned to the observable module to generate the next
round of control fields. We consider each of these elements in
more detail.

Most pulse shapers operate in the frequency domain, by
passing pulses through a grating pair containing a discrete phase
and amplitude mask. To match experiments, our optimization
module operates on the control field ε(ωi) as a function of its
amplitude and phase at a set of discrete frequencies ωi. The
mask is applied to the unshaped input field ε(0)(ω) (usually an
unchirped csc2 line shape of fixed intensity, often modeled by
a Gaussian) according to the formula

The frequency domain electric field is Fourier transformed,
and the time domain field ε(t) for each family member of the
current generation is sent to the observable module.

Each generation of trial fields is produced by a GA that
attempts to increase the average control functional of successive
generations of control fields. Members of the new field family
that have higher control functionals than older members are
allowed to enter the population, and those that have lower values
are discarded.

The key to the whole procedure is a control functional that
uses only experimental observables, but is robustly correlated
to the desired wavepacket dynamics, in this case, freezing a
bright state. Out of a large number of functionals that we tested
for freezing energy flow, we determined that the best are in a
class including the functional

This functional uses averaged fluorescence from the probe state.
As noted above, the control field is supposed to freeze the
controlled state from 0 to tTarget. More fluorescence is then
collected up to tTotal, the maximum time delay between pump
and probe pulse.

The different parts of eq 6 work as follows. The constants in
front ensure that the two integrals are evenly weighted,

irrespective of the tTotal and tTarget chosen, although it is best to
choose tTotal ≈ 2tTarget.

The upper integral favors a high fluorescence signal through-
out the period when IVR (dephasing) of |ΨC(t)〉 is supposed to
be frozen. This maximizes Neff throughout the control period,
avoiding solutions that briefly spike in population. The integral
in the denominator makes sure that collapse of |ΨC(t)〉 to a single
eigenstate is not favored. Such a collapse of the wavepacket
would produce large quantum beats long after the control field
has switched off at t ) ttarg, leading to a large denominator.
Instead, the ratio in eq 6 favors a large amplitude during the
target time, followed by immediate dephasing of |Ψ(t)〉 after
the control pulse is turned off, resulting in a small fluorescence
signal ∼ 1/Neff.

When phase-only pulse shaping is used (assuming the target
is |ΨB〉), the underlying assumptions of eq 6 are twofold. First,
that |〈ΨB|µBC

† |ΨP〉 | ≈ limtf∞Neff|〈Ψ(t)|µBC
† |ΨP〉 |; finally, that no

state other than |ΨB〉 could be generated by the control field
while satisfying the first assumption. These two assumptions
are usually satisfied if the target and probe states are optically
bright states, so their overlap with one another is large compared
to their respective overlaps with the dephased state |Ψ(t)〉 )
Σ Ii

1/2 exp[-iEit/p]|i〉 .
The same is true when the amplitude is also shaped, although

the control field can now increase the bandwidth of |ΨC(t)〉 by
flattening out the population distribution. With additional
amplitude control, it may be necessary to take additional
precautions to avoid undesirable solutions from eq 6. The control
pulse could produce a |ΨC(t)〉 with very few eigenstates in it,
then efficiently pump them back up to |ΨI〉 , quenching any
fluorescence from the C f P transition. This can be avoided
by scaling eq 6 by P Ij(tTarget,tTotal), putting in a penalty for strong
fluorescence from the initial state, whose population should be
depleted by control to produce the largest possible target
amplitude.

Simulation Validation and Example. To validate eq 6 and
its variants, one simply has to evaluate the overlap with the
actual target state:

Our specific computational implementation of the experiment
outlined in Figure 1 is as follows. We use experimental
molecular parameters to construct the simulation Hamiltonian
eq 3. Stimulated emission pumping experiments provided the
line positions and dipole magnitudes of the Ã f X̃ transitions
of thiophosgene listed in Table 1. The simulations reported in
this paper presume an initial population prepared entirely in
the |ΨI〉 ) |101100〉 vibrational state of the Ã electronic state,
19673 cm-1 above the ground-state origin. The control field
ε(t) creates a nonstationary state |ΨC(t)〉 , whose dephasing is to
be frozen on the X̃ state electronic surface. We simulated a mask
with up to 128 amplitude and phase control parameters. The
input field ε(0) corresponds to a transform-limited regeneratively
amplified Ti:Sapphire laser output: 1 mJ maximum energy per
pulse, and a bandwidth of 8 THz at 810 nm. Time propagation
of eq 3 is accomplished by the SUR propagator.26,27

The observable module is not allowed to pass |ΨC(t)〉 to the
optimization module, only quantities of the type illustrated in
eq 2. 〈ΨP|µCP

† ) 〈000000|µXB
† in this case was given by the

ground vibrational state of the B̃ electronic state, and µCP was
the B̃ r X̃ transition dipole magnitude, also listed in Table 1.
The resulting observable can be measured experimentally by

IjK(tmin, tmax) ) ∫tmin

tmax dt0Ifl
K[t0, ε] (4)

ε(ω) ) ε(0)(ω)A(ω)ei�(ω) ) εr(ω) + iεi(ω) (5)

T[ε(t)] )
tTotal - tTarget

tTarget

IjP(0, tTarget)

IjP(tTarget, tTotal)
(6)

∫0

tTarget dt|〈ΨB|ΨC(t)〉 |2 (7)
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delaying the B̃ r X̃ probe pulse with respect to the Ã T X̃
control pulse, and plotting the total fluorescence from the B̃
state as a function of the time delay. (We use the double arrow
for the control pulse because it cycles significant population
both ways.)

Equation 6 could thus be evaluated experimentally, or by the
observable module. To set up the control functional, we found
that ttotg 2tTarget provides a satisfactory result. In our simulations,
we chose tTarget ≈ 7.7 ps near the maximum achievable with
our input pulse bandwidth of 30 THz in a 128 pixel pulse shaper.
The GA28 creates new generations using mutation or crossover
(the swapping of parameters).

To speed the convergence of the GA, the phase and amplitude
control parameters �(ωi) and A(ωi) are represented in a Haar
wavelet basis, as in our past work. This allows the GA to operate
at independent resolution levels from the individual pixel to
the entire pulse shaper and quickly find solutions for large
portions of frequency space that have a simple optimum state
(e.g., completely attenuated). The resolution level is incremented
as the fitness at each order of resolution converges. The process
continues until single-pixel resolution is attained.

Several modifications of the basic GA were necessary for
the wavelet coefficients to transform and converge properly.
When incrementing the wavelet resolution, newly available
coefficients should be set to nonzero values or genetic diversity
will suffer. We perform this transform, σi, in the pixel basis
and increment the coefficients by an amount randomly chosen
within the range that observes the boundary conditions. The
full transform is

where IWT and WT are the inverse and regular Haar wavelet
transforms. Mutation is accomplished in a similar manner; the
wavelet coefficient selected for mutation is only allowed to vary
within limits set in the pixel basis.

Genetic crossover may simultaneously adjust many wavelet
coefficients, so boundary conditions are met by transforming
altered vectors into the pixel basis and truncating values that
exceed bounds. We tested several methods of crossover and
found that using a modified two-point crossover technique
provided the best solutions. In two-point crossover, two vectors
exchange portions of arbitrary length; our program selects one
point in the wavelet vector to begin exchanging and switches
all subsequent coefficients of the same resolution level. This
method produces vectors with an average fitness a factor of 2
higher than one-point crossover, which exchanges all coefficients
from the starting point to the end of the vector.

Results

Figure 4 shows the freezing achieved in a typical amplitude
+ phase control simulation. The unshaped pulse produces a
rapid decay of probe fluorescence, followed by a small baseline
≈ Neff

-1 after the peak. The controlled amplitude is not smooth,
but produces greatly enhanced fluorescence over the 7.7 ps

control period compared to the unshaped pulse. Analysis of the
wavepacket shows that there are two very different reasons for
the large contrast of signal during and after control. One is that
the control amplitude enhances transitions in the wings com-
pared to the center frequency, increasing Neff. The other reason
is back-pumping of the controlled wavepacket to the initial state
when the control period is over. This is not necessarily
detrimental to control. The overlap of controlled state and the
bright target state of Figure 3/Table 1 is substantial (black trace).
As long as the controlled state does not have a collapsed
bandwidth, back-pumping actually can be beneficial: it removes
the freely evolving wavepacket after the control period is over,
preventing any dephased population from reacting or undergoing
other postcontrol dynamics.

Figure 5 shows a more detailed characterization of the control
process. The full wavelet hierarchy was used to achieve control,
although the windowed Fourier transform of the control pulse
shows a relatively simple structure with alternating down and
up frequency chirps. The phase structure of the pulse is more
complex than its amplitude structure, which could be further
economized by not varying amplitude in spectral regions of low
line density. To some extent, such varying-resolution control
is achieved by the wavelet representation.

Given the ca. 50 eigenstates involved in the control, one
would expect to need the full resolution of the pulse shaper,
especially because the eigenstates in Figure 3 are not evenly
spaced. Figure 6 proves this indeed to be the case. The fitness
of the control field decreases by about a factor of 2 for every
factor of 2 in resolution. Reoptimizing at a given resolution
level slightly improves performance, but not back to the full
level.

The comparison of amplitude + phase control in Figures 4
and 7 with phase-only control in Figure 8 (the red traces) shows
that a similar extent of control and population transfer can be
achieved with just the phase. The phase-only control produces
good overlap with its target state. Indeed, the fluorescence trace
in Figure 8 is very close to the target overlap in Figure 8,
showing that the functional in eq 6 is an excellent substitute
for the actual target overlap during phase-only control. This
results because the amplitudes are already constrained to the
desired bright state, and |ΨP〉 is a good stand-in for |ΨB〉 when
it comes to just preventing dephasing.

Both in figure 4 and in figure 7, amplitude control using eq
6 appears to be better than phase-only control at suppressing
recurrences after tTarget, leading to a very large apparent Neff >

[w0,0

w1,0

w2,0

w2,1

0
0
0
0

]98
IWT [a0

a0

a1

a1

a2
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a3
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] 98σi [a0 + rand(σ0)
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a1 + rand(σ1)
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]98
WT [w0,0
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w3,1

w3,2

w3,3

] (8)

Figure 4. Optimized amplitude and phase freezing of IVR involving
the states in Figure 3. Bottom (blue) curve: fluorescence probe signal
from the B̃ state of thiophosgene for the unshaped control pulse in
Figure 3; middle (red) curve: same signal for the pulse optimized to
freeze IVR for 7 ps; top (black) curve: total population in the control
states weighted by the square of the B̃ state transition dipole moments.
Inset: intensities of the unshaped (blue) and shaped (red) control pulses.
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200 in Figure 7. Such a large contrast of fluorescence intensity
during control and after control cannot be achieved with only
ca. 50 eigenstates in the bright state. Figure 7 investigates further
the cause of this large contrast: how much is due to amplitude
shaping broadening of the bandwidth and increasing Neff, and
how much is due to the amplitude-shaped pulse cycling
population back to the initial state more efficiently, suppressing
the probe transition after control is over? The bottom of Figure
7 shows the effect of including a penalty in eq 6 for initial state

(|ΨI〉 ) Ã state) fluorescence. This reduces the amount of
population pumped back to the initial state at the end of the
amplitude + phase control period. The contrast between
controlled and free probe fluorescence is now just slightly larger
than in the phase-only case, with Neff ≈ 40 in both cases. This
shows that the large contrast achieved with amplitude + phase
is mainly due to better recycling of the control population after
control is over.

There is one more way in which amplitude shaping can
decrease the baseline signal at t > tTarget. As can be seen in Figure
3, the Ã T X̃ control transition and B̃ r X̃ probe transition do
not access the same set of vibrational levels in the ground
electronic state. By “parking” population in states inaccessible
by the probe transition, the control pulse can feign a low
population in the controlled wavepacket after control has
elapsed. Indeed, the amplitude + phase control without ad-
ditional constraints in Figure 7 parks about twice as much
population in eigenstates with low transition dipoles from B̃r
X̃ than similar phase-only control in Figure 8, whose fixed target
amplitude ci ) εC

(0)(ωi)εP(ωi)µICµCP excludes such states from
being populated.

Finally, one might ask whether the multiple solutions of the
control field found here are in the same optimized basin. If so,
averaging several solutions together in either the time domain
or in the frequency domain would also yield good control. This
is not the case. The illustrated average of 10 optimized solutions
in Figure 9 produces a fluorescence signal with no contrast

Figure 5. A plot of the amplitude (a) and phase (b) masks for one
optimized control pulse. In each graph, the lowest row represents the
pixel values at the lowest resolution of the wavelet basis, and each
row increments the resolution by a factor of 2 up to the full 128 pixel
representation. (Pixel values are white for full amplitude or phase shift
of π and black for zero amplitude or a phase shift of -π.) Panel c is
a vibrogram of the pulse and panel d shows the real (red) and imaginary
(blue) parts of the electric field in time. Panel e is the phase mask in
the frequency domain, and panel f shows the magnitude of the field in
the frequency domain along with the product of the B̃ r X̃ and Ã f
X̃ transition dipole moments from Figure 3.

Figure 6. A set of fitnesses at shaper mask resolutions from 23 to 27

pixels. The dashed line uses the low resolution components of the
maximum resolution mask. The solid line was reoptimized at each
resolution level. Traces of 24 ps of fluorescence yield (red) corre-
sponding to each mask are attached to each point.

Figure 7. Readout fluorescence for a tTarget ) 7 ps optimization with
amplitude + phase mask. Top (red): using the functional in eq 6; bottom
(black): using the amended fitness functional described in eq 10.
Equation 6 only finds pulses that removed population from the dipole-
active states when control is over and eliminates fluorescence after tTarget.
This condition improved the fitness by a factor of 10, as evidenced by
the large apparent value value for Neff. The amended eq 6 does not
pump population back, so quantum beats in the dephased population
can be observed.

Figure 8. A tTarget ) 7 ps optimization with phase mask only. Top
(red): readout fluorescence using eq 6. Bottom (black): overlap with
the bright state with eigenstate amplitudes given by ci )
εC

(0)(ωi)εP(ωi)µICµCP (the product of the Ã f X̃ and B̃ r X̃ spectra in
Figure 3).
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between the control period and free evolution period. A large
number of equally good but distinct solutions to the control
problem exists.

Discussion

For a pulse shaper covering 8 THz of bandwidth with 128
pixel resolution, the expected maximum control duration
(Nyquist limit) is about 8 ps, and we are clearly able to achieve
freezing of IVR over this time scale with a fitness functional
using only experimentally available data. The key to making a
functional not based directly on the vibrational wavepacket work
is the nature of the IVR process: the initial, target, and probe
states have simple nodal structures and hence strong Franck-
Condon overlaps, while the dephased state to be avoided has
low overlap with these three states. This “negative design”
approach, avoiding the undesirable outcome rather than design-
ing for the desired outcome, allows eq 6 to differentiate the
target from the dephased state that results from the unassisted
vibrational dynamics of the molecule.

One consequence of this difference between bright and
dephased states is the ability of amplitude + phase control to
find reasonable solutions, i.e., solutions whose fluorescence
contrast does not just arise from back-pumping of the population
to the initial state or parking it in states hidden from the probe
transition. For simulations that maintained a large population
in the control state, the addition of amplitude shaping did not
enhance the fitnesses further by more than a factor of 2 (bottom
of Figure 7 compared to the top of Figure 8). If one wishes to
freeze a specific bright state, rather than to obtain the fastest
dephasing after the control pulse ends, the additional bandwidth
of the vibrational wavepacket created by amplitude shaping is
not necessary, and one can simply do phase-only pulse shaping.
The amplitudes are then fixed at the desired target amplitude,
and the control field only prevents dephasing of the eigenstates
making up the bright target state.

Rabitz and co-workers have discussed that coherent optimal
control generally allows for many near-optimal solutions, that
is, the control landscape is rugged.29 This notion is confirmed
by our application, as Figure 9 clearly shows that, while multiple
solutions can be found, averages of these solutions provide little
or no control. The solutions are dissimilar in that sense. This
has been considered a disadvantage (lack of robustness), but it
actually provides robustness against variation of external
parameters beyond the control of the experimenter. In the
presence of additional external constraints, it is more likely that
one can still find a viable solution among the less constrained
solution set. A typical example of such an external parameter

is the laser fluence seen by the molecule. Control experiments
typically used focused laser pulses that have not been shaped
spatially to provide uniform power, so different molecules see
the same temporal field, but with different fluences. We recently
showed that, for a quantum computing control problem, many
solutions can be found, but that when solutions are asked to
work optimally at many laser powers, a subset of these solutions
still performs well.8

It would be interesting to see how close to the limit of
controllability the 8 ps control in Figure 4 comes. The quantized
version of Ulam’s conjecture on transport in weakly chaotic
classical systems provides a quantitative prediction for control-
lability.30 The idea of the quantized Ulam conjecture is to
connect the initial and target states as efficiently as possible as
allowed by anharmonic couplings and transition dipoles, and
to set bounds on the time and laser fluence required, assuming
the field can be shaped arbitrarily subject to these two
constraints. The limit on controllability is given by

In this equation, tTarget has already been defined, f is the laser
fluence (in W/m2), c is the speed of light, ε0 is the dielectric
constant of the vacuum, and µ0 is the transition dipole moment
coupling the initial and bright state. The ratio Ntot/Nloc is a
measure of how strongly chaotic the system is; Ntot is the total
number of states within the control bandwidth, while Nloc is the
local number of states coupled directly to the target bright state;
the limit of classical chaos corresponds to Ntot/Nlocf 1 quantum-
mechanically. For SCCl2 at the conditions shown in Figure 3
and Table 1, the parameters are Ntot ) 5700, Nloc ) 20, µ0 ) 8
× 10-31 Cm, and f ) 25 000 J/m2 (mJ pulse and 200 µm focus),
which sets tTarget g 2 ps. Thus the model of controllability
predicts the minimal control time and indeed, we obtained best
results controlling over 7.7 ps, a time approaching the bandwidth
limit of our pulse shaper model.

Before settling on eq 6 and its fluorescence-weighted variants,
we tested a large number of control functionals. For example,
since the ideal T[ε(t)] would be a constant up to tTarget, then
drop to 1/Neff thereafter, we tested functionals that minimize
the variance of the fluorescence signal during the control period.
These and other functional forms did not perform as well as eq
6. The only comparable performance we observed was by using
functionals that had direct access to the phases and amplitudes
of the eigenstates making up |ΨC(t)〉, but this type of information
is of course not accessible experimentally. The functional in
eq 6 performed essentially as well as the direct overlap
|〈ΨB|ΨC(t)〉 |2, as can be seen by comparing the corresponding
traces in Figure 4, and especially in Figure 8 (phase-only
control).

As described above, it may be useful during amplitude pulse
shaping to design against “parking” population in states inac-
cessible to the probe pulse. A possible modification to eq 6 is
to multiply the fitness functional by the term

S is the dipole-weighted population in the control state at
tTarget, and Smax is its maximum possible value. In the simulations,
this quantity was computed directly from the control wave

Figure 9. Probe fluorescence from the B̃ state of thiophosgene, for
the most fit pulse after GA optimization (red), and for the average of
10 similarly optimized pulses (blue), each beginning with different
randomly chosen input parameters. The average does not provide any
control of IVR.

tTarget g
Ntot

Nloc

2h2cε0

µ0
2f

(9)

(1 + S
Smax

), where S ) ∑ i
|ci(tTarget)|

2|µCP,i|
2 (10)
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function coefficients. In an experiment, it could be measured
by collecting the total fluorescence from the probe state after it
has been populated by a pulse at tTarget. This modification is
useful because it favors solutions that maintain a large popula-
tion in only those energy levels of |ΨC(t)〉 that couple strongly
to the probe state |ΨP〉 . Equation 6 by itself favors no particular
eigenstate in |ΨC(t)〉, which would be a problem if an eigenstate
|i〉 is accessed by the I f C transition moment, but not by the
C f P transition moment, preventing it from contributing to
the fitness functional. Inclusion of eq 10 in the control functional
suppressed the parking of population in dark states by a factor
of 2.

To conclude, phase-only control with a control functional
based on measurable pump-probe fluorescence freezes IVR
essentially as well as wave function-based functionals we tested
previously. Amplitude control is also possible, but requires
additional precautions to avoid populations inaccessible to the
probe transition, while back-pumping of the wavepacket after
control is over can be beneficial because a dephasing population
is avoided. The modular observable/optimization approach
allows direct substitution of experimental or simulated data,
which should allow a better comparison of the controllability
of experimental and simulated systems. The latter can then be
used to gain insight into the origin of controllability in the
experiment. For freezing IVR, our results are in agreement with
a general model of controllability of quantum systems that are
analogous to weakly chaotic classical systems, the quantized
Ulam conjecture.
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